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Abstract
Objective. In a previous study we demonstrated continuous translation, orientation and one-
dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject
with tetraplegia using a brain—machine interface (BMI). The current study, in the same subject,
immediately followed the previous work and expanded the scope of the control signal by also
extracting hand-shape commands from the two 96-channel intracortical electrode arrays
implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating
prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the
subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D)
translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results.
Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance
well above chance levels in all tests. Neural unit preferred directions were broadly distributed
through the 10D space, with the majority of units significantly tuned to all ten dimensions,
instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The
addition of hand shaping emphasized object-interaction behavior. A fundamental component of
BMIs is the calibration used to associate neural activity to intended movement. We found that
the presence of an object during calibration enhanced successful shaping of the prosthetic hand
as it closed around the object during grasping. Significance. Our results show that individual
motor cortical neurons encode many parameters of movement, that object interaction is an
important factor when extracting these signals, and that high-dimensional operation of prosthetic
devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier:
NCT01364480.

Online supplementary data available from stacks.iop.org/JNE/12/016011/mmedia

Keywords: brain—machine interface, brain—computer interface, neuroprosthetics, motor cortex,
intracortical, hand shaping, grasping
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1. Introduction

Spinal cord injury or disease prevents the brain’s command
signals from reaching muscles below the level of the injury.
Brain—machine interfaces (BMIs) offer the possibility of
bypassing the damaged tissue by decoding movement inten-
tion and controlling assistive devices such as computer cur-
sors [1], and, more recently, robotic arms [2—4]. To accurately
extract a subject’s intention, it is important to calibrate the
BMI properly [5], which may be difficult if the intention is
covert. This issue becomes very important for object manip-
ulation, during which the intended action on the object may
not be explicit on an instant-by-instant timescale. The actor
can choose a range of solutions, namely reach trajectories and
hand configurations, to achieve an acceptable result. Simi-
larly, the actor adapts to dynamics as an object is grasped or
transported [6]. Real-world BMIs must account for these
changes to maintain performance.

Our previous work using intracortical microelectrodes
demonstrated that a BMI could provide seven-dimensional
(7D) control (3D translation, 3D orientation and 1D grasp) of
an anthropomorphic robotic arm and hand (Johns Hopkins
University, Applied Physics Laboratory) [7] to a woman with
tetraplegia [3]. While a single continuous grasp dimension
allowed the participant to grasp and transport objects, adding
the capacity for hand shaping in such a device would allow
for a wider range of interactions, from gestures for commu-
nication, to more dexterous manipulation of objects,
expanding the range of possible independently performed
activities of daily living (ADLs). Dexterity, defined as the
ability to coordinate finger movement to shape the hand and
to move the fingers independently, is a prime feature of
human behavior. Several groups working with both non-
human primates and humans have investigated motor cortical
tuning properties during imagined and overt movements of
individual fingers [8—11] or muscles [12]. Others have
investigated encoding schemes where hand shape is described
with reduced dimensionality [13, 14].

For this study, a 4D hand shape basis set was chosen
a priori as a compromise between increasing functional utility
of the hand and maintaining a relatively low-dimensional
control space to reduce calibration time. We investigated 10D
control by adding four hand shapes to our previous six
dimensions of endpoint translation and orientation. Since 10D
control had never been investigated, it was unclear whether
neural units would respond primarily to a single control
domain (translation, orientation, hand shape), or simulta-
neously to all domains with true 10D preferred directions. In
addition to quantifying high-dimensional neural tuning, we
evaluated the participant’s ability to control the robotic arm in
ten dimensions and to perform functional tasks. The partici-
pant demonstrated the ability to control all ten dimensions in
order to achieve targeted endpoint positions, orientations, and
hand postures. However, her ability to manipulate objects was
inconsistent. While the addition of hand shaping allowed for
additional dexterity compared to a single grasp dimension, the
effect of object manipulation on neural activity also became
more pronounced, which motivated changes to our calibration

paradigm. Specifically, we switched to a virtual reality
environment for calibration, which allowed us to incorporate
objects into the grasp and transport phases of movement. The
subject’s subsequent ability to interact with objects sig-
nificantly improved and we were able to quantify her per-
formance on clinical tests of upper limb function across
multiple days. A follow-up experiment was conducted in
order to formally compare the effect of using a virtual
environment and virtual objects during calibration. In order to
allow for within-day comparisons, a 7D BMI, which required
less training time than the full 10D model, was determined
using multiple calibration paradigms. Specifically, we com-
pared BMI performance and function using (1) our traditional
calibration paradigm based on observing the movement of a
robotic arm in space, (2) a virtual training paradigm that
allowed us to present virtual objects to the subject during
training, and (3) a virtual training paradigm that did not use
virtual objects.

2. Methods

2.1. Ethics

This study was conducted under an Investigational Device
Exemption (IDE) granted by the US Food and Drug
Administration and with approval from the Institutional
Review Boards at the University of Pittsburgh and the Space
and Naval Warfare Systems Center Pacific. This trial is
registered on clinicaltrials.gov (http://clinicaltrials.gov/ct2/
show/NCT01364480). No adverse events have been
observed to date.

2.2. Participant

The subject was a 52-year old female with tetraplegia who
was diagnosed with a variant of spinocerebellar degeneration
without cerebellar involvement [15]. The subject had com-
plete loss of upper limb motor control, scoring 0/5 on the
manual muscle test [16]. Clinical examination revealed mild
sensory deficits and some hypersensitivity. Informed consent
was received verbally from the subject; her legal representa-
tive signed all consent documents.

Two 96-electrode microarrays (4x4 mm? footprint,
1.5 mm shank length, Blackrock Microsystems, Salt Lake
City, UT, USA) were implanted in the participant’s left motor
cortex on 10 February 2012. Brain mapping based on struc-
tural and functional MRI was used for stereotactic image
guidance (Brainlab, Westchester, IL, USA) during array
placement.

2.3. Neural recording

The subject used the BMI over a period of 280 calendar days
(see table 1). The first 95 calendar days of experiments were
performed in 7D and are reported in [3]. 10D experiments
which were the focus of this study, were performed on days
119-236 post-implant, for a total of ten weeks. Testing ses-
sions were typically held three times per week and lasted
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Table 1. Study timeline.

Study phases 7D from [3] 10D Study 10D Study 7D Paradigm Comparison Study
Days post-implant 32-95 119-189 192-236 266-280
Number of sessions 24 23 17 6

Calibration paradigm(s) 7D Sequence Task

Testing paradigms
Testing conditions

7D Sequence Task

Computer assisted and
full brain control

Functional evaluations ARAT

(full brain control)

none

10D Sequence Task

10D Sequence Task
Computer assisted and
full brain control

10D VR Object Task 7D VR Object Task, 7D
Sequence Task, 7D VR
Sequence Task

7D Sequence Task

Full brain control only

10D VR Object Task
Computer assisted only

ARAT Box and Blocks-like task

ARAT: Action Research Arm Test.

about 4 h. During sessions, threshold crossings were recorded
using the NeuroPort data acquisition system (Blackrock
Microsystems, Salt Lake City, UT) and firing rate, timing and
spike snippets were saved. Neural firing rates were calculated
for each 30 ms bin and processed to generate command sig-
nals for the MPL at 33 Hz. At the beginning of each test
session, thresholds were set to —5.25 times the baseline root-
mean-square (RMS) voltage on each of the 192 channels and
then manually adjusted if necessary. Single units that showed
large separation from others were isolated using time-ampli-
tude windows which allowed for recording of more than one
‘unit’ per channel. Sorting single units can result in decoding
errors if the waveforms changed shape slightly over 4 h of
testing, as they would fall out of the defined time-amplitude
window. For that reason, after day 135 we tended to use a less
aggressive sorting approach, only isolating units that were
easily distinguishable and windows could be set large enough
to account for noise and slow variations. For testing sessions
after day 135, less than ten units were distinguished from the
thresholded activity across both arrays. Both single- and
multi-unit activity were considered as ‘units’ for the decoding
paradigm and the tuning analysis [17].

2.4. Modular prosthetic limb (MPL) control

The MPL (Johns Hopkins University, Applied Physics
Laboratory) [7] replicates many of the movements performed
by the human arm and hand. When operated in endpoint-
control mode, 16 degrees of freedom can be operated inde-
pendently: 3D translation and 3D orientation of the hand, as
well as 1D flexion/extension of each finger, ab/adduction of
the index finger, combined ab/adduction of the little and ring
fingers, and 4D control of the thumb. For this study, the
robot’s ten hand-based degrees of freedom were projected
into a 4D ‘hand shape’ space. The four hand shape basis
functions were: pinch, scoop, finger abduction, and thumb
opposition (figure 1(A)). Pinch involves flexion of the thumb,
index finger, and middle finger. Scoop involves flexion of the
ring and pinky fingers. Finger abduction allowed for abduc-
tion of the index, ring, and little finger away from a neutral
(adducted) posture. Thumb opposition allowed the participant
to move between thumb opposition (against the palm) and
extension (lateral position). 4D hand shape was combined

with 6D endpoint velocity for a total of ten simultaneously
controllable dimensions. All controlled dimensions were
decoded as velocity signals that were sent directly to the MPL
in velocity-space rather than positional space.

2.5. Calibration procedures and paradigms

Throughout the study, a two step calibration method was used
as previously described [3]. Briefly, in the first step, the
computer controlled the MPL to automatically complete each
trial while the subject observed and imagined performing it
herself. This method elicited observation-driven neural
activity [18-20] that was used to calculate the initial neural
tuning functions (equation (1)). After approximately 10 min
of data collection, a decoder was trained based on the
smoothed (450 ms window) neural activity and computer-
generated kinematics. An exponential window with 3 dB
cutoff at approximately 1 Hz was used for smoothing to bias
the neural activity towards the most recent samples. The 10D
linear encoding model relating observed firing rates [21] to
training-set kinematics is shown in equation (1).

f = by + by, + byvy + bzvz + boyvey + bgngy
+ bo;ve, + bpvy, + byvs + bypvy + byvy, (1)

where f is the square root transformed firing rate for a given
unit, v is the velocity in the indicated dimension and b is the
coefficient relating that velocity to the firing rate. The
dimensions, in order, were translation (x,y,z), orientation
(about each translational axis centered at a point 4 cm normal
to the surface of the palm, 6, 0, 6.), pinch (p), scoop (s), finger
ab/adduction (f), and thumb opposition/extension (¢). The four
hand shape dimensions were chosen to maximize the usability
of the robot while being easily explained to the subject and
were not intended to mimic natural hand synergies [22]. The
hand shape dimensions were continuous. No classification or
discretization of these dimensions was performed. The B
coefficient matrix was solved using indirect optimal linear
estimation (OLE) [23] with variance correction [3] and ridge
regression [24]. Only neural units with firing rates higher than
one event/minute and that fit the encoding model with an R?
greater than a predefined threshold (0.001-0.005) were
included in the decoder and subsequent analysis. The B
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matrix is then pseudo-inverted as described in [3, 23, 24] to
find the decoding weights W. Decoding is then performed by
multiplying the observed neural firing rates vector F by the
weights matrix W resulting in a vector estimating the intended
kinematics. The calibration and decoding procedure is further
described in the appendix.

The decoder trained during observation was then used to
complete the second step of calibration during which the
participant performed the tasks under brain-control with
assistance (ortho-impedance) which attenuated the brain-
command component perpendicular to the ideal trajectory by
100%, essentially restricting the MPL to a movement path
directly towards or away from the target [18]. Ortho-impe-
dance was applied to the 10D control signal generated by the
subject before being sent to the MPL. After 10—15 min of data
collection for the ortho-impedance assisted calibration, a
second decoder was trained using neural activity and the user-
generated kinematics recorded during constrained brain con-
trol. This decoder was then used to complete all testing trials
for a given session.

Two different 10D calibration paradigms, the 10D
Sequence Task and 10D VR Object Task, were used in this
study (videos 1, 2), as shown in the 10D section of table 1.
The 10D Sequence Task used the physical MPL (figure 1(B))
and involved achieving specified endpoint positions, orien-
tations, and hand shape configurations based on LED patterns
or verbal commands. No physical targets were presented. The
10D VR Object Task used the virtual MPL and environment
(figures 1(C) and (E)) and involved grasping and manipulat-
ing virtual objects. The virtual MPL was created using Unity
3D (Unity Technologies, San Francisco, CA) and viewed via
a shutter-based 3D television. The virtual MPL used the same
control system, inverse kinematics model, and dynamics as
the physical MPL [25]. For a given input signal the motion of
the virtual and physical MPL was nearly identical, making the
virtual MPL a valuable tool for calibration. The same custom
software was used to specify target locations, success criteria,
and control settings for both the virtual and physical MPLs
that were commanded in velocity-space and provided position
and velocity feedback to our system. For both paradigms, a
trial consisted of multiple phases during which the target for a
subset of commanded dimensions was specified as described
below. The subject had access to all ten dimensions at all
times, however phases were used to segment each trial and
within each of these segments the non-specified degrees of
freedom had to be kept constant. Successful completion of the
current phase was required before the target for the next phase
was presented. If the subject exceeded the 10 s timeout on any
phase the trial failed and the MPL returned to its starting
position. In both paradigms, for all domains, the target for
each phase was pseudo-randomized on a set-by-set basis. The
possible targets for each control domain (translation, orien-
tation, and hand shape) are described below. At the beginning
of each set, a random permutation of numbers was generated
by the computer and used to select the targets from a list for
each movement phase independently.

2.5.1. 10D Sequence Task (figure 1(D), video 1).

Translate phase: an LED (or combination of LEDs) indicated
the position target at the beginning of the Translate phase.
The MPL hand was required to reach one of ten possible
locations arranged in two vertical planes 35 and 52 cm in
front of the shoulder [3].

Orient phase: computerized verbal prompts were used to
provide the orientation target after successful completion of
the Translate phase. The MPL hand was required to reach one
of seven orientations: +45° of pronation/supination, +45° of
wrist flexion/extension, +20° of ulnar-radial deviation or 0°
on all three axes. Orientation control was in extrinsic (yaw,
pitch, roll) space measured as angular velocity about a point
4 cm off the center of the palm.

Hand phase: computerized verbal prompts instructed the
subject to reach targets in one of the hand shape dimensions:
pinch, scoop, finger abduction, and thumb opposition. The
MPL had to move to a new target in one of these dimensions
while holding the others constant. For example, in
figure 1(D), the target specified thumb extension, while
maintaining the pinch posture. Note that the subject had
continuous velocity-based control over the hand shape basis
functions. No classification or discretization of the space was
performed.

2.5.2. 10D VR Object Task (figure 1(E), video 2).

Reach phase: at the start of the Reach phase, the position,
orientation, and hand pre-shaping (finger ab/adduction or
thumb opposition/extension) targets are cued simultaneously
by the shape and location of a red object in the VR
workspace. The shape of the object (capsular, cylindrical,
ellipsoid) provided the cue for hand pre-shaping (thumb-
extension/finger-adduction, thumb-opposition/finger-adduc-
tion, thumb-opposition/finger-adduction, respectively). Trans-
lation and orientation targets for the Reach and Carry phases
were pseudo-randomly chosen from the same set of positions
and orientations as in the 10D Sequence Task.

Grasp phase: during the Grasp phase a computerized
verbal prompt instructed the participant to pinch, scoop, or
grasp (combination of pinch and scoop) in order to grasp the
object.

Carry phase: the virtual MPL was required to ‘carry’ the
virtual object to a new position and orientation target signified
by the location and orientation of a green plane in the VR
workspace.

Release phase: the virtual MPL was required to reach the
fully-open state in the pinch and scoop dimensions in order to
release the virtual object.

2.6. Domain-specificity in encoding model

Neural and kinematic data collected during the observation
phase of calibration over the 10D portion of the study were
used to determine the domain-specificity of the encoding
model (equation (1)). Observation data was used to get an
initial daily estimate of neural tuning independent of the
influence of closed-loop training with the neural decoder.
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Translate

Orient

Release

Carry

Figure 1. Experiment setup and equipment. (A) Four hand shape postures, clockwise from top left: finger abduction, scoop, thumb extension,
and pinch (B) MPL experiment setup. The MPL is shown with a vertical board and nine LEDs that are used to indicate the translation target
during testing. (C) A screenshot of the virtual testing environment used for the 10D VR Sequence Task. (D) Each movement phase for a
sample 10D Sequence Task trial is shown. (See section 2.5 for a full description of movement phases). (E) Each movement phase for a
sample 10D VR Object Task trial is shown. (F) Objects used in the Action Research Arm Test (ARAT).

Neural tuning was estimated daily using data from the entire
observation training session, not single phases. Three control
domains were considered: translation, orientation, and hand
shape. The translation and orientation models included three
independent variables (3D velocity), while the hand shape
model included four independent variables (four hand shape
dimensions). For this analysis, the p-value of the fit was used
to determine significance, rather than use the R? thresholds
used during online experiments. Tuning was considered sig-
nificant when the p-value of the regression model fit was less
than 0.05.

2.7. BMI testing

BMI testing consisted of evaluations designed to test the sub-
ject’s ability to control all ten degrees of freedom. The 10D
Sequence and 10D VR Object Tasks used for calibration were
also used to evaluate the subject’s performance over time. As
listed in table 1, during the first phase of 10D (control), BMI
calibration and testing were completed with the 10D Sequence
Task, while during the second phase of 10D control, the 10D
VR Object Task was used for calibration and testing. During
testing, the subject controlled all available dimensions
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simultaneously but was instructed to only modulate the
appropriate dimensions for each phase, moving to the target
while keeping unneeded dimensions constant. In order to pass
each phase, the subject was required to achieve the instructed
10D target (specified endpoint position, orientation, and hand
shape) within given error bounds in 10 s. Error bounds were set
prior to the experiment at a level that we felt was reasonable
given the abstract cues (LEDs and sound) used in the 10D
Sequence Task, though minor adjustments were made over the
course of the experiment. Investigators could also manually
mark a phase as a success, for example if the subject over-
rotated the hand in the desired direction. This same procedure
was used previously [3] to minimize frustration. A trial was
considered successful if all movement phases were achieved
successfully. Generally, the subject had the most difficulty
controlling finger ab/adduction that had a small range of
motion (ROM) or she tended to over-rotate in the roll dimen-
sion which had a large range of motion. The final MPL posi-
tion for each dimension fell within the following criteria for
>90% of all successful trial phases (manually marked or
auto-judged by the computer): <9cm from the translation
target, <28° from the orientation target, and <34% of the full
ROM for hand shape. For hand shape, the ROM for each
dimension was scaled from O to 100% with targets at both ends
of this range.

In order to aid learning and to keep the subject engaged,
two types of computer assistance, stabilization and ortho-
impedance, were used as previously described [3]. When
stabilization was set to 100% the non-targeted dimensions
during the current phase were controlled by the computer. For
example, during the 10D Sequence Task the computer would
hold orientation constant during the translation phase and
vice versa. A smaller percentage of stabilization resulted in a
blending of the brain control command signal and the com-
puter generated command signal for the non-targeted
dimensions. In this case, the subject could still control all
dimensions but in a subset of these dimensions a centering
velocity returning the MPL to the target would be blended
with the brain-control signal [3, 18]. Ortho-impedance
restricted movements to the correct 10D trajectory, either
directly toward or directly away from the target, but did not
automatically move the MPL. The components of the com-
mand trajectory that were orthogonal to the ideal trajectory
were reduced by a specified percentage that was varied by the
experimenter. Note that these assistance values were calcu-
lated based on the 10D position and velocity vectors, not
individually for each domain (translation, orientation, or hand
shape). Ideal trajectories were defined as the 10D vector
difference between the current position and the target posi-
tion. Test sessions completed using computer assistance are
identified in the results. No assistance of any kind was used
during ‘full brain control’ trials. Table 1 specifies for each
study phase whether testing was completed with some form of
computer assistance, under full brain control, or both.

Success rate, completion rate, and path efficiency were
computed as measures of BMI performance. Success rate was
the percentage of trials with all phases completed successfully
for a given block of trials (10-20 repetitions). Completion rate

was computed as the number of trials completed per minute.
Target presentation phases, during which the MPL was not
allowed to move, were not included in this calculation. Path
efficiency was calculated as the distance the hand traveled
during the trial divided by the distance from starting point to
end-point (equation (2)) [3]. Each domain was treated indi-
vidually and then averaged. This value was then averaged
over each set of trials and inverted to produce a metric
between 0 (an infinitely inefficient path) and 1 (ideal path).
Note that this metric was insensitive to speed or pauses,
responding only to the efficiency of the path itself.

end
/ JVE v+ de
=0 )

Path Eff =
JAE + Ad2 + Ad?

1
W ZSC[

end 2 2 2
/ Vox + Voy + Vo dt
+ t=0 .

VA, + A}, + Ad,

end

\/vg +v7 + v_,% + v de

+ == : @)
JAd: + Ad2 + Ad% + Ad?

where Ad, is the change in dimension x over the course of a
trial, v, is the instantaneous velocity in dimension x during the
trial, # is time where #=0 at the beginning of each trial, and N
is the number of trials per set. Thus if the hand moved directly
to the target with no deviations in any dimension, the path
efficiency was one. In all other cases, the path efficiency was
less than one.

Normalized performance metrics were computed in order
to allow for comparisons between different test paradigms
and to be able to include trials that incorporated some amount
of computer assistance. In order to determine task difficulty,
the chance level of successful completion was calculated for
each task. This was done by creating a random walk com-
mand signal (velocity controlled by a normally distributed
random variable in each dimension) that matched the actual
command signal’s average speed in each domain. For
example, if the subject moved with a RMS orientation velo-
city of 0.2rad/s on a given trial, the random walk over the
three orientation dimensions would be scaled to have an RMS
velocity of 0.2rad/s as well. For trials that used computer
assistance, the same assistance was added to the randomly
generated command signal used in the actual trials. Each trial
was simulated 200 times using this method to generate the
chance level of success and the 95% confidence interval. The
effective success thresholds in translation, orientation and
hand shape used for the chance level estimation were based
on the subject’s distance from the target location in each
domain at the time the trial was marked as a success (either by
the computer or the experimenter). A performance metric was
then generated by dividing the subject’s success rate by the
chance level (equation (3)). Path efficiency and completion
rate were normalized by calculating the median path
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Figure 2. Neural signal characteristics over the study period. (A) Number of manually online sorted units on each day of testing. Grey dots
denote data previously presented in [3]. (B) Median spike amplitude showing an increasing trend over the first two weeks and then a slow
decline towards stability at about 50 pVpp. The shaded region represents the spike amplitude inter-quartile range. (C) Number of units tuned
to the kinematic encoding model, defined as having a predicted R*>0.005. Although variable, the number of well-tuned units appeared to
steadily decrease beginning around day 150. (D) Distribution of encoding model fits (R* for each unit) over different phases of the study. The
black lines denote the 95% confidence intervals, and the shaded areas the interquartile range, while the horizontal black lines mark the

medians.

efficiency and completion rate using the computer-controlled
MPL for each paradigm and then dividing the actual results
by this value (equation (4)). Path efficiency for the computer-
controlled MPL was less than one due to anatomic constraints
and limitations of the inverse-kinematics model.

Subject’s Success Rate
Performance Level = J

3)

Chance Success Rate

Normalized Value = Subject’s Performance Value

Computer Controlled Value

2.8. Functional evaluation

To test functional performance, the subject used the BMI-
controlled MPL to complete nine subtasks from the Action
Research Arm Test (ARAT) [26]. For 10D control, ARAT
testing was only completed while calibration was performed
with the 10D VR Object Task. Table 1 denotes the study
periods during which the ARAT was completed and the
subtasks are listed in figure 5 and table 3. The ARAT subtasks
chosen were the same as in [3] since the other standard ARAT
subtasks require some degree of compliance in the fingertips
which was not possible with the robotic arm at the time. The
ARAT has been used to quantitatively assess upper limb
function and is indicative of the ability to perform ADLs [26].
The task was executed and scored as in [3]. Briefly, three

attempts were permitted for each object during each session
and the subject was informed that only the best trial would be
included which allowed her to explore different strategies.
Each attempt generated both a score on a 0-3 scale, and a
completion time. The completion time was measured on a
stopwatch by an experimenter. The best score of the three
attempts is reported. The definition of each score is as
follows:

0. Unable to attempt the trial.

1. Touched object, but could not complete trial.

2. Completed trial abnormally or with time longer than 5 s.
3. Normal performance.

2.9. Assessing the effect of object interaction and VR

It was observed that the subject often had difficulty interact-
ing with physical objects, regardless of the performance on
non-object tasks such as the 10D Sequence Task. In fact,
when the neural decoder was trained during the 10D
Sequence Task, performance on object-based tasks was
inconsistent enough that we did not formally attempt the
functional evaluation with the ARAT. We hypothesized that
altering the training paradigm to include objects might
improve her ability to interact with objects. This motivated
the switch to the 10D VR Object Task on day 189 post-
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Figure 3. Neural tuning to hand shape in primary motor cortex. Data shown in this figure was based on 64 trials of observation activity
collected during the 10D Sequence Task on day 179 post-implant. (A) Projection onto the Scoop-Pinch plane of preferred directions in 4D
hand shape space. Each line represents a unit with the length indicating modulation depth. (B) Projection onto the thumb opposition—finger
Ab/adduction plane of preferred directions in 4D hand shape space. A and B show that units had preferred directions that sampled the hand
shape space although the depth of modulation of these units was variable. (C)—(J) Raster plots for single units showing response to positive
and negative velocities along each dimension of hand shape space. Each row represents a single observation trial, where the command to
move is given at r=0. Each vertical line represents a single action potential from the unit listed on the Y-axis.

implant, which allowed us to easily present virtual objects in
various positions and orientations. During this second phase
of 10D control, both calibration and BMI performance testing
were done in the virtual environment using the 10D VR
Object Task, however the primary focus was on the functional
evaluation using the ARAT with the physical MPL since her
ability to interact with objects was significantly improved. We
attributed this improvement in performance to the change in
calibration paradigm, although we could not rule out the
possibility that she simply became more proficient with the
BMI over time.

As a follow-up study conducted on days 266280 post-
implant, we attempted to quantify the effect of using VR and
incorporating objects into the training paradigm. BMI per-
formance was assessed for three distinct calibration para-
digms described below: (1) calibration with the MPL without
objects (7D Sequence Task), (2) VR calibration without
objects (7D VR Sequence Task), and (3) VR calibration with
virtual objects (7D VR Object Task). These comparisons were
made using 7D control (3D translation, 3D orientation, 1D
grasp) since it required less training time than 10D allowing

multiple calibration paradigms to be investigated and com-
pared in each experimental session. Calibration was per-
formed with two steps (observation and ortho-impedance) as
described in section 2.5.

2.9.1. 7D Sequence Task (supplemental video 3).

Translate phase: An LED (or combination of LEDs) indicated
the position target at the beginning of the Translate phase.
The MPL hand was required to reach one of ten possible
locations arranged in two vertical planes 35 and 52 cm in
front of the shoulder [3].

Orient phase: Computerized verbal prompts were used to
provide the orientation target after successful completion of
the Translate phase. The MPL hand was required to reach one
of seven orientations: +45° of pronation/supination, +45° of
wrist flexion/extension, +20° of ulnar-radial deviation or 0°
on all three axes.

Hand phase: Computerized verbal prompts instructed the
subject to grasp or open the hand (simultaneous flexion/
extension of all fingers and thumb).
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29.2. 7D VR Sequence Task (supplemental video 4,
figure 1(C)):

The 7D VR Sequence Task is the same as the 7D Sequence
task reproduced in the VR environment.

2.9.3. 7D VR Object Task (supplemental video 5).

Reach phase: The virtual MPL hand was required to reach
one of ten possible locations arranged in two vertical planes
35 and 52cm in front of the shoulder [3] cued by the
appearance of a virtual object.

Orient phase: Once the MPL was at the correct position,
the virtual object rotated to specify a new orientation target
selected from the following set: +45° of pronation/supination,
+45° of wrist flexion/extension, +20° of ulnar-radial deviation
or 0° on all three axes. Orientation control was in extrinsic
(yaw, pitch, roll) space measured as angular velocity about a
point 4 cm off the center of the palm.

Grasp phase: The virtual MPL had to reach the fully
closed state in the grasp dimension. Note that grasp velocity
was a 1D continuous measure that was integrated to control
grasp position, not a discrete mode switch.

Carry phase: The virtual MPL had to carry (translate) the
now-grasped object to a new position. This position was
randomly selected from the same set as in the original
translation phase.

Reorient phase: The virtual MPL had to rotate the object
into a new orientation randomly selected from the same set as
the original Orientation phase.

Release phase: The virtual MPL had to reach the fully
open state in the grasp dimension.

Two of the three calibration paradigms were determined
each day, over six total testing days for a total of four
sessions with each. The order of training was pseudo-
randomized, and all combinations were tested. BMI
performance was assessed for the two neural decoders each
day using success rate on the 7D Sequence Task. Functional
performance testing for two decoders in the same day
required a faster task than the ARAT. A simplified ‘Box and
Blocks’ [27]-like task was used during these 7D decoder
comparison experiments (video 6). During this task, the
subject was instructed to pick up a 7.5 cm cube from the left
half of a 90x 60 cm table top, move it over a 12 cm high
barrier, and set it down on the right half of the table. This
task was performed on a table located about 40 cm below
the shoulder. The initial position of the cube was 20 cm left
of the barrier. After each successful release, the experi-
menter replaced the block at the starting position. Each trial
lasted 2 min during which the number of successful transfers
was recorded. The average number of transfers per minute
and the 7D Sequence Task success rate achieved with each
decoder were each compared using an ANOVA with post-
hoc pairwise comparisons where appropriate.

3. Results

3.1. Neural recordings

Figure 2(A) presents the number of units recorded each day.
The number of units increased steadily until we switched to
the conservative method of sorting discussed in section 2.3 on
day 135. After this point the number of units was relatively
stable. The conservative approach to sorting reduced varia-
bility in the recorded signals by making the analysis more
tolerant to the smaller delineations between units caused by
lower spike amplitudes (shown in figure 2(B)). Conservative
sorting resulted in a higher ratio of multi-unit activity to
single-unit activity, but more stability over the testing period.
Figure 2(B) shows the median peak-to-peak voltage of the
largest unit on each electrode. Between days 60 and 200 post-
implant, the median spike amplitude decreased from 75 pV to
50 pV and then remained fairly constant. Figure 2(C) shows
the number of units whose firing rates were significantly
predicted by the encoding model (equation (1), 7D or 10D),
defined as having a predicted R*>0.005. The distribution of
predicted R* values for those units, grouped by study period,
is shown in figure 2(D). The first 7D period represents data
already presented [3]. The second 7D period includes data
from the secondary investigation of the effect of VR or
including objects in the calibration paradigm (see table I).
Predicted R2, computed with ten fold cross validation, was
used in order to allow for more direct comparison of unit
tuning for across study periods that had different numbers of
independent variables (seven or ten) in the encoding model.
The number of tuned units declined in the second half of the
study using this fairly liberal criteria (predicted R*>0.005)
that includes units whose firing rate variance is only
weakly captured by the encoding model. The distribution of
R? values for the tuned units, however, remained fairly con-
stant (figure 2(D)).

3.2. Presence of hand shape tuning

Clear single/multi-unit tuning to hand shape was observed.
Units had preferred directions that spanned the 4D hand shape
space. Figures 3(A) and (B) provide examples of these pre-
ferred directions for a given recording session in a 2D sub-
space, calculated using linear regression (equation (1)) on
observation-related neural data for each individual unit col-
lected during the Hand phase of the 10D Sequence Task
calibration. Figures 3(C)—(J) shows spike rasters for single
units responding to positive and negative targets along the
basis vectors of the hand shape space from this single day’s
data. Figure 3 is representative of neural activity recorded on
any given day.

3.3. Domain-specificity in encoding model

Neural and kinematic data collected during the observation
phase of calibration over the 10D portion of the study was
used to determine the domain-specificity of the encoding
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Figure 4. Venn diagram of the percentage of units significantly tuned
to each domain or combination of domains over the 10D study
duration. Most of the units (80.4%) recorded during this study have
been significantly (p <0.05) tuned to all three domains.

model. As summarized in figure 4 of the 7255 single and
multi-units recorded over the study, 22.1% showed significant
tuning to at least one domain. 96.2% of units that showed
significant (p <0.05) tuning in one domain also showed sig-
nificant tuning in another. 80.4% of units that showed sig-
nificant tuning to at least one domain were significantly
modulated to all three domains. For reference, this distribu-
tion remained stable after the calibration paradigm was
changed to the VR environment. 79.9% and 80.2% of units
showed significant tuning to all three domains for data col-
lected during calibration with the 10D Sequence Task and
10D VR Object Task respectively.

3.4. 10D BMI control performance

Success rate, normalized performance, path efficiency, and
normalized trial completion rates were computed as measures
of BMI performance as shown in figure 5. All 10D BMI
control data were included for sessions that were tested with
the 10D Sequence Task and 10D VR Object Task. We have
also reproduced previously reported 7D data collected prior to
day 98 post-implant for comparison [3]. Full brain-control
testing was not performed for the 10D VR Object Task since
the subject reported difficulty operating the virtual MPL
because of limited depth perception even with the 3D display
and difficulty visualizing small changes in hand posture,
particularly ab/adduction. Also, during this phase of the
study, the focus was on functional use of the MPL, measured
primarily with the ARAT that comprised most of the session
testing time. Computer assistance, either stabilization or
ortho-impedance, was used during testing with the 10D VR
Object Task to maintain success rates in a range that kept the
participant motivated (see table 1).

Success rate on the BMI testing tasks, shown in
figure 5(A), varied considerably over the course of the study
ranging from approximately 60—-100%. During the previously
reported 7D BMI experiments [3], a median success rate of
85.0% [IQR 80.0-90.0] was achieved on full brain-control
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trials (filled markers, no computer assist). A lower, but still
well above chance, median success rate of 70.0% [IQR
62.5-75.0] was achieved during the first segment (up to day
189) of 10D full brain-control when the physical MPL was
used for calibration. During this same 10D testing period, the
normalized performance metric was often higher than for 7D
control although it was more variable with a median of 14.09
[IQR 9.8-555.5] during 10D control versus 9.0 [IQR 5.3—-18.8]
during 7D control. The performance metric accounted for the
increased difficulty of the 10D task captured by the chance
level estimate. Combining all of the full brain control data
showed that the subject’s performance increased exponentially
(linearly on the semi-log scale with p=0.002) as she learned to
use the BMI first in 7D and then in 10D (figure 5(B)). Nor-
malizing to chance level allowed us to include trials that were
not collected under full brain control (where stabilization or
ortho-impedance assistance was used) in our assessment of
BMI proficiency (open markers). Therefore, success rates and
normalized performance metrics were shown for the 10D VR
Object Task as well. Since various levels of computer assis-
tance were used for this testing, the chance levels were higher
causing the resulting performance metric (ratio of success rate
to chance level) to be lower.

Path efficiency and completion rates are charted over the
entire experiment in figures 5(C)—(E), with each point nor-
malized to the ideal command signal. The ideal command
velocity calculated under computer control always pointed
directly toward the target with a magnitude proportional to the
distance to the target. Limits were placed on maximum
velocity and acceleration so that the start and end of each
movement was smooth. This ideal command signal was cal-
culated for each trial collected over the course of the study,
and the median value for all trials of a given paradigm was
used for normalization. Variability under computer control
arose due to the inverse kinematics and dynamics generated to
achieve the pseudo-randomized target positions. Normal-
ization allowed for comparison between tasks that would
otherwise not be possible. Since the median value was used
for normalization, it was possible for normalized path effi-
ciency or completion rate to be greater than one. Translational
path efficiency was relatively constant for full brain control
trials with a median of 0.54 [IQR 0.49-0.59] in 7D [3] and
0.55 [IQR 0.49-0.60] 10D control as evaluated by the 10D
Sequence Task. For all BMI tasks, the raw (un-normalized)
performance metrics, including orientation and hand shape
path efficiency, for full computer-control and full brain-con-
trol are shown in table 2. Orientation and hand shape effi-
ciencies are lower than translation efficiency even under full
computer control due to the smaller ROM and greater sensi-
tivity to small movements in an untargeted dimension (which
could occur due to the inverse kinematics of the MPL) or
sensor noise. Normalizing the brain-control data to the com-
puter-control data reduced the impact of inefficiencies not
related to BMI performance. As a result of this normalization,
the translation, orientation, and hand shape domains con-
tribute equally to overall path efficiency (7 or 10D).

ARAT scores from 11 days of 10D BMI testing using
neural decoders trained with the 10D VR Object Task are



Table 2. Median and IQR of performance metrics for each BMI testing task: Subject performance (full brain-control) compared to automatic control of the modular prosthetic limb (full computer-

control). Variability under full computer control was due to the randomized sequence of targets used coupled with the dynamics and inverse kinematic performance of the MPL.

Full brain-control (no assistance)

Full computer-control

Path efficiency

Path efficiency

Completion rate Completion rate
Paradigm Success rate (%) Performance (trials/min) Translation Orientation Hand shape 7 or 10D (trials/min) Translation Orientation Hand shape 7 or 10D
7D Sequence task [3] 85.0 [80.0-90.0]  9.00 [5.33-18.75] 9.27 [8.37-10.54] 0.54 [0.49-0.59]  0.35[0.29-0.39]  0.22 [0.14-0.29]  0.36 [0.33-0.41]  23.9 [21.8-25.9] 0.89 [0.84-0.92]  0.39 [0.32-0.46]  0.57 [0.38-0.98]  0.61 [0.56-0.71]
10D Sequence task 70.0 [62.5-75.0] 14.09 [9.77-555.47] 5.37 [4.99-5.91] 0.55 [0.49-0.60]  0.42 [0.36-0.47]  0.26 [0.18-0.31]  0.40 [0.36-0.45] 16.8 [15.1-18.0] 0.83 [0.74-0.91]1  0.70 [0.63-0.77] ~ 0.41 [0.32-0.53]  0.61 [0.58-0.72]
10D VR Object Task®  — — — — — — — 7.6 [7.2-7.8] 0.97 [0.96-0.98]  0.90 [0.89-0.92]  0.58 [0.57-0.59]  0.81 [0.80-0.83]

" Full brain-control trials were not attempted for the 10D VR Object Task due to time constraints and a focus on performance with the physical MPL. Computer-controlled values are shown for reference.

b

Table 3. ARAT completion times and scores.

ARAT completion time during 10D control (s)

Object Day 196 Day 199 Day 200 Day 203 Day 207 Day 210 Day 217 Day 220 Day 221 Day 228 Day 229
1. Block, 10 cm cube 433 15.9 25.7 8.5 16.0 14.0 33.1 102.0 22.0 9.0 42.7
2. Block, 2.5 cm cube 12.6 13.3 13.1 — 13.2 43.6 — 70.0 — 56.5 —
3. Block, 5 cm cube 26.5 100.0 17.2 7.3 14.5 6.5 10.1 74.0 10.4 17.0 14.2
4. Block, 7.5 cm cube 40.7 12.6 10.5 7.0 11.6 5.8 14.0 12.0 7.0 10.4 41.9
5. Ball, 7.5 cm diameter 20.7 235 13.1 10.0 — 6.2 — — 7.1 8.0 —
6. Stone, 10cmx2.5cmx 1 cm 58.0 16.2 10.3 9.5 22.7 24.1 — 19.6 9.6 7.2 19.6
7. Pour water from glass to glass® — — — — — — — — — — —
8. Tube, 2.5 cmx 16 cm — 16.6 18.7 7.3 12.6 75.0 — 11.9 48.3 8.2 10.7
9. Tube, 1 cmx 16 cm 23.8 20.2 13.5 — 8.2 — — — 61.0 — —
Average time/Item (s) 32.2 27.3 15.3 8.3 14.1 25.0 19.1 48.3 23.6 16.6 25.8
Total ARAT score 16 17 17 15 16 16 12 15 16 16 14

" Task 7 ‘Pour water from glass to glass’ was never fully completed during a scored session, but was attempted each day.
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Figure 5. Sequence and VR Object Task performance over the study with previously reported 7D data [3] shown to the left of the dashed
vertical line and 10D data shown to the right. Gaps indicate days when no 7D or 10D testing was performed. Filled markers represent full
brain control (FBC) data, while empty markers indicate some level of stabilization or ortho-impedance. The green lines represent linear

regression fits. Only performance and completion rate had slopes fits that were significantly (p <0.05) different from zero. (A) Success rate
and median chance level (red) for each day of testing data over the study. Red circles represent the overall chance level for each day. (B)
Normalized performance metric, defined as the ratio of user success rate to median chance level. (C) Path efficiency for 3D translation only.
In C-E all results were normalized to the median value for each task under automatic control by the computer with the interquartile range
(IQR) shaded in grey. (D) Path efficiency averaged over all three domains. (E) Normalized completion rate, where the un-normalized value is

expressed as number of trials per minute.

shown in table 3. Task 7 ‘Pour water from glass to glass’ was
never fully completed during a scored session. We have
included it in the results because it was attempted each day
and was included in the total possible score. Anecdotally, the
subject did successfully complete the task twice during
unstructured practice sessions. Figure 6(A) illustrates the
number of days in which each object (task) was successfully
completed. As previously stated, the subject’s ability to
interact with objects was inconsistent and frustrating for the
subject during the portion of the study that used the 10D
Sequence Task for training. Thus no ARAT testing was
performed until calibration with the 10D VR Object Task
started on day 192 post-implant. While using the 10D BMI
trained with the 10D VR Object Task, the subject achieved an
average score of 15.5 (range 12-17) out of a possible 27 on
the modified ARAT. This was not significantly different from
previously reported performance [3] with 7D control on days
80-98 post-implant (average score=16, range 15-17), as
shown in figure 6(B). Similarly, the average movement time
per item on the test was 23's (SD 11) in 10D which was not
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significantly different (ranksum p >0.1) from the original 7D
testing, 17s (SD 5).

3.5. Effect of calibration paradigm

During early 10D control the subject often had difficulty
interacting with physical objects, even when performance on
the 10D Sequence Task was very good. It was hypothesized
that context-sensitive factors associated with object manip-
ulation were interacting with the kinematic decoding model,
rendering the model ineffective when the object was to be
grasped. As such, after day 189 post-implant, we switched to
a VR environment that allowed for interaction with virtual
objects during training. Almost immediately this improved
the participant’s ability to interact with physical objects,
allowing for consistent ARAT scores during the second half
of 10D testing (table 3, figure 6). In a secondary experiment,
three calibration paradigms were investigated over six testing
sessions (two decoders per session, pseudo-randomized)
using 7D control to objectively quantify the effect of
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Figure 6. Summary of physical-object ARAT results. (A) Count of the number of 10D ARAT sessions during which the subject successfully
completed each object (task), out of a total of 11 possible sessions. The object numbers refer to the order listed in table 3 where Object 1 is
the 10 cm cube. Task #7 (pouring water from glass to glass) was attempted, but never fully completed during a scored session. (B)

Comparison of mean ARAT score between 7D (n=7 sessions) [3] and 10D (n=11 sessions) BMI control. The vertical lines represent one

standard deviation.

including objects and using the VR environment for calibra-
tion: the 7D Sequence Task, the 7D VR Sequence Task, and
the 7D VR Object Task. The subject's BMI performance
using the different decoders was quantified using the 7D
Sequence Task (eight blocks per decoder each consisting of
20 trials collected across four days) and a Box and Blocks-
like task as summarized in figure 7. The subject’s perfor-
mance on the functional Box and Blocks-like test was sig-
nificantly better when using a decoder calibrated with the 7D
VR Object Task compared to 7D Sequence Task (rank sum
p=0.035) or 7D VR Sequence Task (rank sum p=0.0008)
calibration paradigms (figure 7(A)). However, on the 7D
Sequence Task, a task that did not include objects, the subject
performed equally well using the decoders from the three
different calibration paradigms (figure 7(B)). All results
shown in figure 7 were collected while the BMI was under
full brain-control (no computer assistance).

4. Discussion

This study demonstrates 10D BMI control of a robotic
anthropomorphic arm by a subject with chronic tetraplegia.
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Examined over the full study period, the larger number of
degrees of freedom available increased the median perfor-
mance on full brain control BMI testing tasks relative to
chance levels approximately 1.5 times compared to the 7D
control from [3]. An initial increase in success rate of 10D
trials completed under full brain control was observed, similar
to our original 7D training [3]. When success rate was cor-
rected for task difficulty, as in figure 5(B), we saw that per-
formance increased exponentially (linearly on the semi-log
scale, p=0.002) from the beginning of the study until the VR
experiments began, showing that learning took place con-
sistently over a long period of time. Performing the task in
VR was comparatively difficult and required greater compu-
ter-assistance to maintain a reasonable success rate and is
probably why the consistent long-term performance increase
was no longer apparent at this point in the study. The fact that
performance increased during the transition from 7D to 10D
despite the larger number of controllable dimensions and the
novelty of the hand shaping dimensions is somewhat sur-
prising. This suggests that the learning identified in [3] was
transferred to the higher dimensional space, resulting in a
similar level of BMI proficiency. Perhaps the subject’s
learning was accelerated because six of the control
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dimensions (translation and orientation) remained the same
throughout the experiment. As discussed below, BMI profi-
ciency on the 10D Sequence Task, however, was not initially
sufficient to achieve reliable performance on tasks that
required object manipulation. By changing the calibration
paradigm, the subject was able to demonstrate consistent
performance on clinical evaluations involving object
transport.

The overall number of units and mean peak-to-peak
amplitude decreased over time (figure 2), so the fact that we
saw consistent or improving performance despite this drop in
signal level suggests that the population was working more
efficiently. This could happen in a number of ways, including
a redistribution of preferred directions, conscious re-aiming
by the subject to account for common mistakes, and improved
unit tuning [5]. Figure 2 also shows a significant drop-off in
the number of units once we switched to a more conservative
sorting protocol on day 135 post-implant, which did not seem
to affect BMI performance as shown in figure 5. Anecdotally,
our within-session stability was substantially increased by
switching to a more conservative sorting protocol. While this
result was not rigorously tested, it is in keeping with others
who have argued that aggressive sorting may not be ideal in
BMIs [17].

Robust tuning to hand shape velocity (as linear combi-
nations of joints) was observed in primary motor cortex. This
is consistent with several other studies which have identified
finger-based tuning [9-11], and hand shape-based tuning
[13, 14]. We further demonstrated that the preferred directions
of the recorded motor cortical units in 10D space were not
significantly segregated into translation-only, orientation-only
or hand shape-only groups. This result implies that within the
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context of higher dimensional control, units are not modu-
lated by a single dimension or domain, and so training
paradigms must be designed to accurately estimate preferred
directions within a larger n-dimensional space. While we
were able to identify neural units with strong responses to
positive or negative velocities in one dimension of the hand
shape space, as a general rule neural units weakly encoded
multiple movement-related parameters. This is summarized in
figure 4 with more than three-quarters of the neural popula-
tion showing significant tuning to all three control domains.
Population decoding can be used to accurately extract weak,
but consistent contributions from a recorded sample of units.

While this investigation was limited to a single human
subject, our results are comparable to lower dimensional
studies of neural tuning and robotic arm BMI performance in
non-human primates [5, 18] in that firing rate predicted
velocity-related information. Further, we demonstrated con-
sistent and at times improved, performance over nearly one
year of testing. The hand shape basis functions used here,
were chosen based on the recommendation of an occupational
therapist and constraints of the robotic hand even though
other movement primitives [13, 14, 22, 28, 29] may have
provided a more natural basis for control. The fact that our
primitives showed robust neural correlates (figure 3) suggests
that even a sub-optimal choice of control parameters may be
useful in achieving high-performance BMI outcomes.

Our primary goal was to demonstrate proficient BMI
performance on functional tasks. While the subject showed
good 10D performance on the 10D Sequence Task, this did
not translate to consistent performance during object manip-
ulation. Once the 10D VR Object Task calibration paradigm
was implemented, the subject demonstrated an ability to grasp
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and transport objects with the physical MPL which enabled
ARAT testing across multiple days. ARAT 10D performance
was fairly constant and similar to that observed during the
initial 7D period, showing that the subject was able to
maintain a high level of performance while controlling a more
complex system. Some of the performance limits we observed
were likely linked to our experimental design. A subset of
ARAT tasks (9 of 19 tasks) was chosen that could be per-
formed using both seven- and ten-dimensional control. The
subject’s 7D performance in [3] was very good, suggesting
she may have reached a performance ceiling effect for these
particular tasks. The more difficult fine motor tasks of the
ARAT, such as grasping a marble, were not included.
Obviously these tasks require very precise placement of the
MPL hand. With conventional robotic devices, the effector
must be precisely positioned with respect to the object as they
interact, even for larger objects. Any mismatch imparts forces
which will damage the robot or the object and/or displace the
target object. This accuracy constraint can be relieved by a
compliant effector or a soft object. For instance, we adjust the
compliance of our own fingers to compensate for unknown
weight distributions of objects or to match the softness of the
object [30, 31]. The MPL hand has limited compliance and
this may have contributed to the overall difficulty our subject
experienced when grasping and moving physical objects, or
limited the way that she was able to grasp the objects. This
was perhaps most notable when she tried to pick up a cup and
pour it into another container. Controllable compliance is an
active area of robotics [32]. Despite limitations, the subject
was able to establish novel strategies to simplify these tasks.
For instance, she learned to ‘scoop’ the 2.5 cm cube with the
pinky finger during 7D control by curling it around the cube
as the whole hand closed. She generally maintained this
strategy, instead of pinching the cube between the thumb and
fingers when this capability was added in 10D control. We
noticed that while the subject was proficient with the addi-
tional hand shape control available in 10D (as judged by
performance on the 10D VR Object task) allowing more
varied grasp strategies on some objects, the subject seemed to
prefer using her 7D strategies during the 10D trials. Since all
ten dimensions were being controlled simultaneously in these
later trials, the subject was often regulating the extra dimen-
sions to make the hand operate as if it was controlled with a
single command signal, conforming to her previous strategies.
This suggests that the selection of these strategies was learned
from previous experience.

Interaction with physical objects is relatively new in the
BMI field, though several studies have demonstrated this with
some success [2, 3, 12, 18] most of which operated in a lower
dimensional (<4 DOF) space. The object sets were typically
limited to those included during the calibration procedures,
which was not the case in our study. Although it was important
to perform the calibration with objects, once the tuning func-
tions were established, a variety of novel objects could then be
grasped. When the tuning functions were established in the
absence of objects, the subject had subsequent difficulty
completing the physical grasp in the testing phase of the trial.
This typically manifested as a repelling velocity away from the
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object, pushing through the object as a grasp was attempted,
and the inability to initiate or maintain a grasp when an object
was present, demonstrated in video 7. This was observed
occasionally during the 7D control portion of the study
reported in [3] but seemed to be remedied by consistent
practice with objects after the BMI calibration phase. The
object interaction problem was more pronounced in the 10D
trials. For example, we often found that the prosthetic hand and
target object behaved as if there was a repelling force field
between them: if an object was moved toward the hand, the
hand would back away, despite the subject’s stated intention to
grasp the object. When the subject closed her eyes she was able
to close the hand on the object. Subsequently, successful 10D
ARAT testing took place after using a VR calibration paradigm
with virtual objects, demonstrated in video 8. This showed that
inclusion of objects in the calibration procedure was a critical
factor in achieving satisfactory 10D prosthetic performance and
was further confirmed by within-day 7D testing. Adapting our
calibration paradigm to include virtual objects significantly
improved her performance on the functional ‘Box and Blocks’-
style object interaction task (ranksum p=0.035) without
decreasing performance on the 7D Sequence Task. Impor-
tantly, we saw this benefit even though the objects used during
calibration (virtual cylinders, spheres, and capsules) were dif-
ferent from the physical objects manipulated during testing
(e.g. blocks during the ‘Box and Blocks’-style task) in size,
shape, color and weight. We chose to use VR because it
allowed us to easily present objects of various shapes at many
locations and orientations without the need for a robotic target
presentation system as has been used previously [18]. We are
encouraged that calibration using VR translates to functional
performance with the physical MPL as this is something that
can be implemented in a person’s home since it just requires a
3D TV. Future studies that plan to use force-control may need
to incorporate weighted objects and realistic dynamics into the
calibration paradigm. In our case, using velocity-control,
weight compensation was handled by the internal controller of
the physical MPL.

Although we did not pursue this issue explicitly, our
results suggest that seeing an object elicits a component or
factor that interacts with our kinematic model, acting as a
modifier to the control signal. By including objects in the
calibration, the resulting coefficient estimation, at least par-
tially ‘accounted for’ this unknown factor. Such factors may
be related to a coordinate system shift (e.g. to an object-
centered frame), a perceived increase in accuracy constraints,
the introduction of object-related force and expectations of
tactile feedback. The BMI paradigm, with explicit control
models, anthropomorphic actuators, large-scale single unit
recording and an engaged human subject makes it possible to
design experiments that can address these and many other
speculative control factors. Tool use, object identity and
intended action are prominent aspects of grasping and finger
movement. Engineering approaches mixed with neurophy-
siology and psychophysics can lead both to revolutionary
therapies and to exciting advances in understanding the basic
brain processes that govern the complex interactions we have
with our surroundings.
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5. Conclusions

This study demonstrates, for the first time, BMI control of an
anthropomorphic prosthetic arm that includes continuous
control of multiple dimensions of hand shape. This success
was based on the observation that context affects perfor-
mance, specifically the presence of physical objects as targets,
and we found it important to include these in the calibration
paradigm. The results generated with this subject greatly
extend the sophistication of previous BMI demonstrations and
show that highly coordinated, natural arm and hand move-
ment can be restored to people with upper limb paralysis.
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Appendix. Calibration and decoding

The following model was used to relate unit activity to MPL
movement velocity [33]:

f =by + byv, + byvy + bzvz + boyver + bgngy

+ bo.ve, + bpvp + bsvs + brve + by, (Al)

where f is the square root transformed firing rate of a unit

16

during movement described by ten-dimensional velocity
vector V (Vy, vy, v, Vo Vay Vo Vps Vs, VisV) and bo, by, by, b, by,
boy, bo., by, b, by, b, are the coefficients that vary for each
unit. Units that were not tuned to any direction of movement
velocity (R? < threshold) were excluded from further proces-
sing. Over the course of this study the threshold varied
between 0.001-0.005. In matrix form, this relationship is
written as

Fixn1 = VixaiBlaxn (A2)

where ¢ is the number time points used for decoding, n is the
number of neural features and d is the number of kinematic
dimensions. Indirect optimal linear estimation (OLE) [34]
with ridge regression [35] was used to solve for the coefficient
matrix B as follows:

B= ( VIV + ﬂl*lldxdj)\VTF (A3)
where 1, is the optimization parameter for ridge regression
and I is a dxd identity matrix. The decoding weights, W,
which directly map neural firing rates, F, to kinematic com-
mand signals, V, satisfy the following equation:

V[zxd] = F[txn] ‘/V[nxd] (A4)
and were solved for using ridge regression and variance
correction [33] as below:

+
W = (BZpxn BT + A2*laxa)) B Zpays (AS)

where * is the Moore-Penrose pseudoinverse and X is a
diagonal matrix with values equal to the inverse variance of
the residuals for each neural unit. Essentially this weights
units that carry more information about movement velocity
higher, and reduces the contribution from units that carry less,
or more variable, information.

Decoding is then performed by multiplying the new
feature vector F'[x, by the weight matrix W to find an
estimate of the intended kinematics vector V'[.; as in
equation (A4).
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